If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+20x+81=0
a = 1; b = 20; c = +81;
Δ = b2-4ac
Δ = 202-4·1·81
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{19}}{2*1}=\frac{-20-2\sqrt{19}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{19}}{2*1}=\frac{-20+2\sqrt{19}}{2} $
| -26=d+7 | | 3=x/25=6 | | Y=4,075,998+0.04x | | x/4+5=44 | | (t/2)-5=-8 | | Y=12x-75 | | 3x-2/2x+3=3x-1/2x+1 | | 12=x-75 | | -4/15n+2/3=2/5n | | X^2+5=4x+3 | | 60=3.90/(10-g) | | X-9=-3y | | F(X)=x2+-12+45 | | 9+x=3x/5+11 | | 12/3+z=23/4 | | 8/2=2x/10 | | 4.5(k-3)=6.2 | | 4n—2=14 | | 4(-2-3)=-5(x-2)+2 | | Y=12x^2+24x-135 | | 2x-5x+0=9 | | -7(2x+)+3(5x-4)=0 | | 10/8=2n/6 | | A+6+a=18 | | 6n-20=2n+4(1-3)n | | 9=1-2d | | x+14.2=20.62 | | 2/3×2+e=15 | | 9m-(4m-8=53 | | 1/3(y)-18=2 | | 3b-7=-7+3b | | 10/2=2n/6 |